PUGSVM: a caBIGTM analytical tool for multiclass gene selection and predictive classification

نویسندگان

  • Guoqiang Yu
  • Huai Li
  • Sook S. Ha
  • Ie-Ming Shih
  • Robert Clarke
  • Eric P. Hoffman
  • Subha Madhavan
  • Jianhua Xuan
  • Yue Joseph Wang
چکیده

UNLABELLED Phenotypic Up-regulated Gene Support Vector Machine (PUGSVM) is a cancer Biomedical Informatics Grid (caBIG™) analytical tool for multiclass gene selection and classification. PUGSVM addresses the problem of imbalanced class separability, small sample size and high gene space dimensionality, where multiclass gene markers are defined by the union of one-versus-everyone phenotypic upregulated genes, and used by a well-matched one-versus-rest support vector machine. PUGSVM provides a simple yet more accurate strategy to identify statistically reproducible mechanistic marker genes for characterization of heterogeneous diseases. AVAILABILITY http://www.cbil.ece.vt.edu/caBIG-PUGSVM.htm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data

Gene expression data sets hold the promise to provide cancer diagnosis on the molecular level. However, using all the gene profiles for diagnosis may be suboptimal. Detection of the molecular signatures not only reduces the number of genes needed for discrimination purposes, but may elucidate the roles they play in the biological processes. Therefore, a central part of diagnosis is to detect a ...

متن کامل

Multiclass microarray data classification based on confidence evaluation.

Microarray technology is becoming a powerful tool for clinical diagnosis, as it has potential to discover gene expression patterns that are characteristic for a particular disease. To date, this possibility has received much attention in the context of cancer research, especially in tumor classification. However, most published articles have concentrated on the development of binary classi...

متن کامل

Ensemble Neural Networks with Novel Gene-Subsets for Multiclass Cancer Classification

Multiclass gene selection and classification of cancer are rapidly gaining attention in recent years, while conventional rank-based gene selection methods depend on predefined ideal marker genes that basically devised for binary classification. In this paper, we propose a novel gene selection method based on a gene’s local class discriminability, which does not require any ideal marker genes fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2011