PUGSVM: a caBIGTM analytical tool for multiclass gene selection and predictive classification
نویسندگان
چکیده
UNLABELLED Phenotypic Up-regulated Gene Support Vector Machine (PUGSVM) is a cancer Biomedical Informatics Grid (caBIG™) analytical tool for multiclass gene selection and classification. PUGSVM addresses the problem of imbalanced class separability, small sample size and high gene space dimensionality, where multiclass gene markers are defined by the union of one-versus-everyone phenotypic upregulated genes, and used by a well-matched one-versus-rest support vector machine. PUGSVM provides a simple yet more accurate strategy to identify statistically reproducible mechanistic marker genes for characterization of heterogeneous diseases. AVAILABILITY http://www.cbil.ece.vt.edu/caBIG-PUGSVM.htm.
منابع مشابه
SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملSparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data
Gene expression data sets hold the promise to provide cancer diagnosis on the molecular level. However, using all the gene profiles for diagnosis may be suboptimal. Detection of the molecular signatures not only reduces the number of genes needed for discrimination purposes, but may elucidate the roles they play in the biological processes. Therefore, a central part of diagnosis is to detect a ...
متن کاملMulticlass microarray data classification based on confidence evaluation.
Microarray technology is becoming a powerful tool for clinical diagnosis, as it has potential to discover gene expression patterns that are characteristic for a particular disease. To date, this possibility has received much attention in the context of cancer research, especially in tumor classification. However, most published articles have concentrated on the development of binary classi...
متن کاملEnsemble Neural Networks with Novel Gene-Subsets for Multiclass Cancer Classification
Multiclass gene selection and classification of cancer are rapidly gaining attention in recent years, while conventional rank-based gene selection methods depend on predefined ideal marker genes that basically devised for binary classification. In this paper, we propose a novel gene selection method based on a gene’s local class discriminability, which does not require any ideal marker genes fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 27 5 شماره
صفحات -
تاریخ انتشار 2011